home *** CD-ROM | disk | FTP | other *** search
- >13.Inequality. (Parameters)
- a^2≤x^2≤-2>0
- MYSZEK 2xy
- EXAMPLE
- e
- t101
- p10
- t0
- zr
- t1
- p6
- t0
- v500
- zrm
- k^
- t2
- p2
- t0
- ;kCm
- cam
- k^m
- c2m
- ;kSm
- sdm
- cxm
- k^m
- c2m
- sdm
- k-m
- c2m
- k>m
- c0m
- kP
- t4
- p7
- t0
- Pd
- ca
- t5
- p6
- t0
- cam
- p2
- t6
- p4
- t0
- Po
- p1
- ke
- t7
- p4
- t0
- kem
- p10
- oxm
-
- kS
- t8
- p3
- t0
- sgm
- kbm2
- slm
- kbm
- k>m
- kd
- t9
- p6
- t0
- kd
- t12
- kd
- p6
- t0
- kdm
- cam
- k#m
- c0m
- kP
- kPm
- kY
- t14
- p6
- t0
- kYm
- p1
- slm
- t16
- p9
- t0
- kbm
- k=m
- ke
- t18
- p3
- t0
- kem
- p10
- oxm
-
- t20
- p4
- t0
- sd
- t22
- p5
- t0
- sdm
- shm
- ssm
- spm2
- ssm
- c0m
- kQ
- t24
- p6
- t0
- kQm
- p10
- oxm
- Pp
- t26
- p4
- t0
- sd
- t28
- p6
- t0
- sdm
-
- ssm
- spm
- ssm
- k/
- t30
- p6
- t0
- k/m
- klm
- sdm2
- cam
- k^m
- c2m
- sdm
- slm3
- shm
- ssm
- spm2
- ssm
- kxm
-
- spm2
- k?
- t32
- p4
- t0
- k?m
- ox
- p20
- oxm
- sgm
- kbm
- sdm
- spm
- ssm
- sem
- ssm
- k@
- t34
- p6
- t0
- k@m
- sem
- ssm
- shm
- ssm
- kc
- p1
- kcm
- sem
- com
- crm
- kvm
- slm3
- kbm
- k<m
- k-m
- ke
- t36
- p3
- t0
- kem
- p10
- oxm
-
- t38
- p4
- t0
- spm
- kb
- t40
- p5
- t0
- kbm
- kb
- kbm
- sgm
- shm
- ssm
- sem
- ssm
- k@
- v1000
- k@m
- sdm
- kbm
- sdm
- k|
- k|m
- shm
- k|m
- spm3
- ssm
- slm
- ssm
- kcm
- v500
- slm4
- ssm
- slm
- ssm
- kvm
- ;ke
- ;t46
- ;p3
- ;t0
- ;kem
- ;p10
- ;oxm
-
- kV
- t42
- p3
- t0
- kVm
- on
- p10
- onm
- p10
- oxm
- t44
- p5
- t0
-
- kPm
-
- ze
- t102
- p10
- t0
- zxm
- zem
-
- e
- q
-
- BLURB
- 1`We are going to solve the inequality:
- 1`#@a^2≤x^2≤-2>0@,
- 1`where "$a"$ is a parameter.
- 2`We open the &Equations& window and write the problem.
- 2`#To create an exponent we press &Shift&+&6& or
- 2`#the on-screen button.
- 4`#Using the mouse we move to
- 4`#the &Data and auxiliary variables& window.
- 4`#It is minimized now.
- 5`#We write the parameter:
- 5`#"$a$.
- 5`#If we have more than one parameter
- 5`#we place each of them in a separat line.
- 6`Using the mouse we move to the &Equations& window.
- 7`As usual after formulating the problem we press &ENTER&.
- 8`We transform the inequality.
- 9`We consider two cases:
- 9`#"$aπ0⁄a=0"$.
- 12`#We add the conditon:
- 12`#"$aπ0"$
- 12`#to the domain
- 12`#(press the on-screen button or &Shift&+&D& keys).
- 14`#We create the second case
- 14`#(press &Shift&+&Y& or the on-screen button).
- 16`#The program copies the contents of the previous case.
- 16`#We have to modify the domain condition.
- 18`We press &ENTER& to confirm the breakdown.
- 20`We solve each case separately.
- 22`#In the &case 2& window we
- 22`#substitute the value for "$a"$ into the inequality.
- 24`#This is a contradiction.
- 24`#We press the &Contradiction& button.
- 26`Using the mouse we move to the &case 1& window.
- 28`#We divide both sides of the inequality by
- 28`#@a^2≤@.
- 28`#We do not reverse the inequality sign since
- 28`#for "$aπ0"$ we have @a^2≤>0@.
- 30`#To insert "$2"$ into the numerator,
- 30`#we mark the block
- 30`#and press the &"/"& button at the end of it.
- 32`We ask the program for a hint at the inequality sign.
- 34`#To insert the fraction under the root sign
- 34`#we mark the block and
- 34`#press &Shift&+&2& or the on-screen button.
- 34`#Notice the position of the mouse.
- 36`We press &ENTER& to check our solution.
- 38`We transform the expressions.
- 40`#We press the &Backspace& button twice
- 40`#to remove the root sign.
- 42`#This is the final result.
- 42`#We press the &Answer& button.
- ;42`#We press "&ENTER&"
- ;42`#&without making any changes& in the expression.
- 44`Now the problem is solved.
- 46`We press &ENTER& again.
-
- 101`#We show how to use 2xy.
- 101``#"The presentation proceeds automatically."
- 101``#To move yellow panels use the mouse.
- 101`#Press ENTER on the KEYBOARD to continue.
-
- 102`#In a moment the &Examples& window will appear.
- 102`You can watch the same presentation again, or
- 102`#load the next example, or
- 102`#close the window and solve your own problem.
-